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When described through a plane-wave basis set, the inclusion of exact nonlocal exchange in hybrid func-
tionals gives rise to a singularity, which slows down the convergence with the density of sampled k points in
reciprocal space. In this work, we investigate to what extent the treatment of the singularity through the use of
an auxiliary function is effective for k-point samplings of limited density, in comparison to analogous calcu-
lations performed with semilocal density functionals. Our analysis applies, for instance, to calculations in
which the Brillouin zone is sampled at the sole � point, as often occurs in the study of surfaces, interfaces, and
defects or in molecular-dynamics simulations. In the adopted formulation, the treatment of the singularity
results in the addition of a correction term to the total energy. The energy eigenvalue spectrum is affected by
a downwards shift in the energy eigenvalues of the occupied states, while those of the unoccupied states remain
unaffected. Analogous corrections also speed up the convergence of screened exchange interactions despite the
absence of a proper singularity. Focusing first on neutral systems, both finite and extended, we show that the
account of the singularity corrections bears convergence properties which are quantitatively similar to those
observed with semilocal density functionals. We emphasize that this is not the case for uncorrected energies,
particularly for elongated simulation cells for which qualitatively different trends are found. We then consider
differences between total energies of systems differing by their charge state. For systems involving localized
electron states, such as ionization potentials and electron affinities of molecular systems or charge transition
levels of point defects, the proper account of the singularity correction yields convergence properties which are
similar to those of neutral systems. In the case of extended systems, such energy differences provide an
alternative way to determine the band edges, but are found to converge more slowly with simulation cells than
in corresponding semilocal functionals because of the exchange self-interaction associated to the extra charge.
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I. INTRODUCTION

In the past decades, density-functional theory1,2 has be-
come the mainstream technique for electronic-structure cal-
culations of large molecules, clusters, liquids, and solids. In
condensed-matter applications, the most common functional
has initially been based on the local density approximation
�LDA�,2 but generalized gradient approximations have be-
come increasingly popular in the last two decades.3–7 A class
of functionals that could potentially lead to higher accuracy
include a fraction of exact nonlocal exchange in the
exchange-correlation potential.8,9 This class of functionals,
referred to as hybrid functionals, has become the standard
electronic-structure approach in quantum-chemistry applica-
tions. For molecular systems, these functionals achieve a
more accurate description not only of atomization energies,10

but also of ionization potentials and electron affinities.11

However, several shortcomings still remain. For instance, the
desired chemical accuracy is not always attained and no so-
lution is offered for the treatment of Van der Waals interac-
tions. Nevertheless, it appears quite clearly that the inclusion
of exact exchange constitutes an improvement, which might
be particularly useful in several circumstances.

When applied to semiconductors and insulators, hybrid
functionals provide a superior description to semilocal func-
tionals. For instance, structural parameters are found to be
closer to experimental values.12,13 Furthermore, hybrid func-
tionals give electronic band gaps which are systematically

larger than those achieved with semilocal functionals, gener-
ally leading to a better agreement with experiment.12–14 In
particular, the improvement achieved by hybrid functionals
in which the Coulomb potential is screened is
remarkable,12,13 and the origin of this successful description
can be rationalized.15 A more accurate description of the
band gap is especially important in certain classes of prob-
lems, such as the study of surface and interface states16,17 and
the determination of defect energy levels.18 Indeed, a physi-
cally meaningful description of electronic states lying in the
band gap can only be achieved when the calculated band gap
approaches the experimental one.17–34

For the treatment of condensed systems, hybrid function-
als have been available for some time in codes combining
GAUSSIAN basis sets and periodic boundary conditions.35,36

However, it is expected that the treatment of the electronic
structure through hybrid functionals carries potential to be
much more widely used in an implementation based on
plane-wave basis sets and pseudopotentials.37 In this respect,
the treatment of exact exchange poses several new problems
with respect to the use of standard semilocal functionals.

First, the calculation of exact exchange entails a signifi-
cantly higher computational cost. To address this issue, effi-
cient algorithms have been developed to optimize the scaling
with respect to the number of plane waves.38–40 A further
gain is achieved through optimal adaptation to new mas-
sively parallel computer platforms.41 Despite these improve-
ments, plane-wave-based hybrid-functional calculations for a
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system of 1000 electrons still yield a computational cost ex-
ceeding that of semilocal ones by more than two orders of
magnitude.28,42 Nevertheless, such calculations are attracting
increasing interest as larger computational resources become
available.

Second, the expression for exact exchange includes an
integrable divergence,43 which hinders its straightforward
use within plane-wave formulations because of its slow con-
vergence with the density of k points. Gygi and Baldereschi
proposed a numerical treatment of the divergence based on
the analytic integration of an auxiliary function showing the
same singularity.44 Such auxiliary functions are nowadays
available for arbitrary unit cells.39,45,46 Alternative treatments
consist in truncating the Coulomb operator,48 using a
screened Coulomb potential,40 or transforming the Bloch
functions in order to compute real-space Coulomb
integrals.49

Third, the nonlocal exchange coupling between valence
and core states also intervenes in the basic pseudopotential
approximation. Such interactions can be accounted for
within an all-electron scheme in which the pseudopotential
approximation consists in freezing the wave functions of the
core states.16 The core-valence interactions due to exchange
then lead to a modification of the nonlocal pseudopotential
term. In consideration of the fact that current hybrid func-
tionals generally only include a fraction of exact exchange
�about 25%�, pseudopotentials derived within semilocal for-
mulations have often been transferred to hybrid schemes
without any modification28,29,40,50 or through the only use of
nonlinear core corrections.30 However, when core-valence
interactions are sizable, these practices require particular
care, and it has recently been pointed out that they might
lead to inconsistencies.51

In this work, we focus specifically on aspects associated
with the treatment of the integrable singularity when calcu-
lating the exact exchange expression in electronic-structure
schemes based on plane-wave basis sets. Following Gygi and
Baldereschi,44 we adopt a formulation in which the diver-
gence is treated analytically. This scheme can be recast in
such a way that the treatment of the divergence results in a
correction term formally corresponding to the Fourier com-
ponent of the exchange potential at vanishing wavevector in
the Brillouin zone.46 We first address the degree of conver-
gence that can be achieved with a k-point sampling of finite
density for both the total energy and the energy eigenvalues,
in comparison with a similar calculation that does not in-
clude exact exchange. This aspect is particularly important to
validate calculations based on large simulations cells with
the Brillouin zone sampled only at the � point, a configura-
tion which is often used in surface, interface, and defect cal-
culations or in ab initio molecular-dynamics simulations. We
also consider exchange interactions based on screened Cou-
lomb potentials. While this case formally does not show a
singularity, there are specific circumstances in which the
same convergence deficiency occurs as for the bare Coulomb
potential. We then study the effect of the singularity correc-
tion on the total energy of charged systems. Differences be-
tween total energies of systems involving a different number
of electrons are relevant for determining the electron affinity,
the ionization potential, the band gap, and the charge transi-

tion levels of defects. We discuss the effect of the correction
on these quantities for the cases of both finite and extended
systems. In particular, in the case of extended systems, we
clarify the way the singularity correction affects the band
edges obtained from the energy eigenvalues and those ob-
tained through total-energy differences.

This paper is organized as follows: in Sec. II, we review
the treatment of the singularity of the exact exchange opera-
tor in the case of plane-wave basis sets following the scheme
of Gygi and Baldereschi.44 An extension of this method to
the case of large supercells with sparse k-point sampling is
described. A generalized procedure for treating the case of
screened exchange is also given. In Sec. III, we describe the
computational setups used in this work. Section IV presents
convergence tests for total energies, energy eigenvalues, and
single-particle energy gaps of neutral systems including mol-
ecules and solids. Results obtained with �-point sampling are
studied for increasing supercell size. In the case of extended
systems, a comparison is carried out with converged calcu-
lations achieved with small unit cells and dense k-point sam-
plings. In Secs. V and VI, we study charged systems with
localized and delocalized charge states, respectively. In par-
ticular, we focus on total energies, single-electron eigenval-
ues, electron addition energies, electron removal energies,
and charge transition levels of defects. We study the conver-
gence of these quantities as a function of the singularity cor-
rection and emphasize the difference between localized and
delocalized states. The conclusions are drawn in Sec. VII.

We note that a method related to hybrid functionals con-
sists of including exact exchange in a local way through the
use of an optimized effective potential.52,53 While this
scheme is not explicitly discussed in the following, our con-
siderations regarding the singularity correction also apply in
this case.

II. TREATMENT OF THE SINGULARITY

A. Exact exchange

The exchange energy of a solid is a finite quantity if ex-
pressed per one unit cell.43 In a basis of plane waves, the

matrix element of the Fock exchange operator V̂x is given
by44

�k + G�V̂x�k + G��

= −
1

2�2 �
m,G�

�
BZ

dq
cmq

� �G� + G��cmq�G + G��
�k − q − G��2

, �1�

where the sum over m runs over the occupied states and the
integral is carried out over the Brillouin zone �BZ�. Since the
integrand diverges for q=k, special numerical care is re-
quired when replacing the integral with a sum over a finite
number of k points. To treat the singularity, Gygi and Bal-
dereschi used an auxiliary function, periodic in reciprocal
space and showing the same �1 / �k−q�2 divergence as the
integrand in Eq. �1�. The integral of this function is then
subtracted and added to the right-hand side of Eq. �1�. The
subtracted term eliminates the divergence of the integrand
and turns it into a smooth function of q, which can accu-

BROQVIST, ALKAUSKAS, AND PASQUARELLO PHYSICAL REVIEW B 80, 085114 �2009�

085114-2



rately be evaluated through a sampling of special k points.
The singularity is effectively transferred to the added term
and is taken care of through analytical integration.44,46,47

The method of Gygi and Baldereschi requires to be
adapted in order to be applied to calculations with large su-
percells and sparse k-point samplings. First, it is convenient
to adopt the notation Q=q+G� and cmq�G+G��=cm�G
+Q�

�k + G�V̂x�k + G�� = −
1

2�2�
m
� dQ

cm
� �G� + Q�cm�G + Q�

�k − Q�2
,

�2�

where the integral is over the whole of reciprocal space. For
illustration, we focus in the following on a k-point sampling
based on the sole � point, i.e., k=�. Application of the pro-
cedure proposed by Gygi and Baldereschi transforms the
right-hand side of Eq. �2� to

−
1

2�2�
m
� dQ	 cm

� �G� + Q�cm�G + Q�
Q2

− cm
� �G��cm�G�f�Q�
 −

1

2�2�
m

cm
� �G��cm�G�� f�Q�dQ ,

�3�

where the auxiliary function needs to chosen in such a way
that f�Q�→1 /Q2 when Q→0. In addition, the function f
must be integrable in the whole of reciprocal space. The term
in parentheses is now a smooth function of Q in which the
divergence is cancelled. Therefore, it is justified to approxi-
mate the integral over Q in the first term in Eq. �3� with a
discrete sum via

�

�2��2� dQ → �
Qi�0

, �4�

where � is the volume of the simulation cell. We here as-
sume that the discretization in Q space corresponds to the k
points for which the wave functions are determined. The
second term in Eq. �3� is to be evaluated through an analyti-
cal integration. The final expression reads

�G�V̂x�G�� = −
4�

�
�
m

�
Qi�0

	 cm
� �G� + Qi�cm�G + Qi�

Qi
2

− cm
� �G��cm�G�f�Qi�


−
1

2�2�
m

cm
� �G��cm�G�� f�Q�dQ �5�

In the case of �-point sampling, the sum over Qi simply
corresponds to a sum over the reciprocal-lattice vectors G�
from which G�=0 needs to be excluded.

We emphasize that the closer f�Q� is to 1 /Q2, the
smoother the integrand in the parentheses, and the more ac-
curate the approximation of the integral by a sum of discrete
terms. Hence, this condition should guide the choice of the
optimal function f . We note that in the formulation of Gygi

and Baldereschi, the auxiliary function is to a certain extent
arbitrary, because ultimate convergence can always be
achieved by increasing the density of the k-point sampling.
In the case of a fixed k-point sampling, the converged result
is achieved by considering simulation cells of increasing
size. However, in practice, this limit is computationally more
prohibitive. For instance, as a word of caution, we emphasize
that for small band-gap materials very large supercells might
be required in calculations relying only on the � point even
at the semilocal level. Generally, a satisfactory target for cal-
culations including exact exchange corresponds to the
achievement of the same level of convergence as that at-
tained for a semilocal functional under the same k-point sam-
pling conditions. For this reason, it is important to chose a
function f which yields the best convergence properties for
the chosen k-point sampling.

By reorganizing the order of the terms in Eq. �5�, we
obtain the following appealing form:

�G�V̂x�G�� = − �
m,G�

cm
� �G� + G��cm�G + G����G�� , �6�

where ��G� represents a suitable generalization of the Fou-
rier transform of the exchange potential and is given by

��G� = � 1

�

4�

G2 for G � 0,

� for G = 0,
� �7�

with

� =
1

2�2�
All

f�Q�dQ −
4�

�
�

G�0
f�G� . �8�

This form is particularly convenient since it implies that only
the G=0 term needs to be modified in practical implemen-
tations. We note that standard numerical implementations do
not experience any difficulty for treating the differences be-
tween large numbers that this reorganization of terms im-
plies.

A suitable form of the auxiliary function f is39,45

f�Q� =
e−�Q2

Q2 . �9�

For this particular choice of auxiliary function, the G=0
term of the exchange potential becomes

���� =
1

��
−

4�

�
�
G

e−�G2

G2 . �10�

For illustration, we show in Fig. 1 the dependence of � on �
in the case of a cubic cell with a side of 20 bohr. As men-
tioned above, the approximation of replacing the integral in
Eq. �3� with a discrete sum is the more accurate, the closer
f�Q� is to 1 /Q2. This leads to the following well-defined
expression for �
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� = ��0� = lim
�→0

	 1
��

−
4�

�
�
G

e−�G2

G2 
 . �11�

We now analyze the effect of the singularity correction on
eigenvalues and total energies. In our notation, the super-
script “corr” indicates that the correction � has been ac-
counted for, whereas the superscript “uncorr” is used for
quantities obtained with ��G=0�=0 in the definition �7�.

The exact exchange term contributes to the eigenvalue �n
of the state n through the following expression:

	�n = �
G,G�

cn
��G�cn�G���G�V̂x�G�� , �12�

where we used the matrix element �G�V̂x�G�� given in Eq.
�6�. The singularity correction affects the eigenvalue as fol-
lows:

	�n
corr − 	�n

uncorr = − � �
G,G�

�
m

cn
��G�cn�G��cm

� �G�cm�G�� =

− ��
m


nm
2 = �− � for n occupied,

0 for n unoccupied,
�

�13�

where m runs over the occupied states and where we used the
orthonormalization condition of the eigenstates. Thus, all the
eigenvalues of occupied states shift down by �, whereas
those of unoccupied states remain unaffected

�n
corr = �n

uncorr − � for n occupied,

�n
corr = �n

uncorr for n unoccupied. �14�

In this derivation, we assumed that the ordering of the states
is not affected by the application of the singularity correc-
tion.

The exact exchange part of the total energy is given by

Ex =
1

2�
n

�
G,G�

cn
��G�cn�G���G�V̂x�G�� , �15�

where the contribution of the singularity correction is

−
�

2 �
G,G�

�
n,m

cn
��G�cn�G��cm

� �G�cm�G�� = −
�Nel

2
, �16�

with Nel corresponding to the number of electrons in the
supercell. Thus

Etot
corr = Etot

uncorr −
�Nel

2
, �17�

i.e., a correction of −� /2 for each electron.
In the limit �→0 �cf. Eq. �11��, the correction −� /2 cor-

responds to the electrostatic energy of a point charge inter-
acting with a uniform compensating background charge in
the periodic cell. Indeed, following the method proposed by
Ewald,54 one replaces the point charge by a Gaussian charge
distribution:

��r� =
1

8�3�3/2e−r2/�2��2
. �18�

The second term in Eq. �10� then corresponds to the electro-
static energy of the Gaussian charge distribution interacting
with the background and is evaluated in Fourier space. The
first term in Eq. �10� compensates for the self-interaction of
the Gaussian charge. The complete Ewald method also gives
a third term, which accounts for the difference between the
point charge and the Gaussian charge and which is generally
evaluated in real space. The absence of this term in Eq. �10�
accounts for the variation in � with � in Fig. 1. However, in
the limit �→0, the latter term vanishes and the correction
−� /2 precisely corresponds to the electrostatic energy of the
point charge. This connection has been pointed out earlier in
the case of isolated molecules in large supercells on the basis
of an intuitive reasoning.16 The present derivation shows that
the same correction term also applies to the case of extended
systems.

B. Screened exchange

We note that the methodology described above does not
only apply in the presence of a divergence, but might also be
useful when the interaction potential only shows a rapidly
varying behavior. Indeed, the direct treatment of such a po-
tential in Fourier space is difficult when the density of k
points cannot easily be increased. For instance, this applies
to screened exchange interactions.

We here illustrate this point by focusing on the screened
exchange interaction recently proposed in functionals devel-
oped by Heyd, Scuseria, and Ernzerhof �HSE�,55 but the
scheme also applies analogously to other forms of screened
exchange. In the HSE functional, a complementary error
function is used to describe the short-range exchange inter-
action

Vsr =
erfc��r�

r
, �19�

where � is a suitable parameter defining the extent of the
potential. For simplicity, let us again consider the �-point
approximation. The matrix element of the screened exchange
operator in a plane-wave basis set is given by an expression
analogous to Eq. �6�. The interaction potential is given by the
Fourier transform of the potential defined in Eq. �19�, i.e.,

0 20 40 60 80 100
γ (bohr

2
)

0.05

0.10

0.15

0.20

χ
(h

ar
tr

ee
)

FIG. 1. The function � �Eq. �10�� vs the parameter � for a cubic
simulation cell with a side of 20 bohr and �-point sampling. The
optimal treatment of the singularity is achieved for �=0.
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�sr�G� =
1

�

4�

G2 �1 − e−G2/�2��2
� . �20�

The G=0 component of this potential �sr�G=0� is not di-
vergent, and is equal to � / ���2�. However, the latter expres-
sion cannot be used for any value of �. Indeed, when the
screened exchange interaction approaches the exact one �viz.
in the limit �→0�, �sr�G=0� diverges rather than converg-
ing to the correct value given in Eq. �11�.

We derive a suitable expression of �sr�G=0� by proceed-
ing in the same way as in the previous section. The correc-
tion is again given by Eq. �8�, where we now choose as
auxiliary function

f�Q� =
e−�Q2

Q2 �1 − e−Q2/�2��2
� =

e−�Q2

Q2 −
e−��+ 1

4�2 �Q2

Q2 .

�21�

Using the definition given in Eq. �10� and taking the limit as
in Eq. �11�, we find the correct expression for the G=0 com-
ponent of the screened exchange potential

�sr�G = 0� = ��0� − �� 1

4�2� = �̃��� , �22�

which defines the function �̃���. This leads us to the follow-
ing form for the interaction potential:

�sr�G� = � 1

�

4�

G2 �1 − e−G2/�2��2
� for G � 0,

�̃��� for G = 0.
� �23�

To illustrate the behavior of this correction as a function of
�, we considered a cubic simulation cell with a side of 20
bohr. Figure 2�a� shows that the function �̃��� is nearly in-
distinguishable from the analytical expression � / ���2�
when �0.1 bohr−1. However, for lower values of �, the
screened potential approaches the bare Coulomb interaction
and the analytical expression gives erroneous results. In-
stead, the function �̃��� correctly reproduces the Coulomb
limit for �=0.

For comparison, the parameter � assumes the value of
0.106 bohr−1 in the HSE functional.56 Hence, for the case
illustrated in Fig. 2�a�, the proposed treatment would not
produce a sizable correction. However, the situation changes
when smaller simulation cells are used. We show in Fig. 2
the dependence of the singularity correction on the size of
the cubic cell for �=0.106 bohr−1. It is seen that the analyti-
cal expression deviates from the proper correction �̃ for cell
sizes smaller than 18 bohr. This behavior reflects the fact that
at these cell sizes the �-point sampling in reciprocal space is
too sparse for properly treating the spatial variations of the
screened exchange potential defined by �=0.106 bohr−1.

III. METHODS

The semilocal density-functional calculations in this work
were performed within the generalized gradient approxima-
tion proposed by Perdew, Burke, and Ernzerhof �PBE�.7 We
considered the class of hybrid functionals which are obtained

by replacing a fraction � of the PBE exchange with exact
exchange57

Ex
hybrid = �Ex

exact + �1 − ��Ex
PBE. �24�

In this work, we used the functional defined by �=0.25,
which is referred to as PBE0.57 The singularity correction
then corresponds to a fraction � of the correction pertaining
to full exact exchange

� = �� = 0.25� . �25�

In our electronic-structure scheme based on plane waves,
only valence electrons are treated explicitly and core-valence
interactions are described by normconserving
pseudopotentials.58,59 Pseudopotentials were generated at the
PBE level and were also used in the calculations based on
hybrid functionals. This is expected to be a valid approxima-
tion for the atoms considered in this work, i.e., C, N, O, and
Si, in which core-valence exchange interactions are weak.
We used a kinetic-energy cutoff of 20 Ry for systems involv-
ing only Si atoms, but increased the cutoff to 70 Ry when
any of the other atoms occurred. These cutoffs are suffi-
ciently high to ensure converged total energies and energy
eigenvalues. For all calculations involving small supercells
and dense k-point meshes, we used the code PWSCF of the
QUANTUM-ESPRESSO package,60 in which exact exchange and
the singularity correction are implemented.47 All calculations
involving large supercells and �-point samplings were car-
ried out with the CPMD code. In this code, we extended the
available implementation of exact exchange to account for
the singularity following the scheme outlined in Sec. II A.

We also performed electronic-structure calculations for
molecules with the GAUSSIAN03 suite of programs.36 We used
the large cc-pVTZ basis set. This method does not give rise

0 0.1 0.2
ω (bohr

-1
)

0.1

0.2

χ
(h

ar
tr

ee
)

5 10 15 20 25
L (bohr)

0.0

0.2

0.4

0.6

χ
(h

ar
tr

ee
)

L
3ω2

~

π

Ωω2

~

π

ω=0.106

Ω=20x20x20 bohr
3

FIG. 2. �a� The singularity correction for screened exchange �̃
�Eq. �22�� as a function of the screening parameter � for a cubic
simulation cell of 20 bohr �solid line�. At large � the singularity
correction coincides with the analytical expression �̃���
→� / ���2� �dashed line�. �b� �̃ vs the side L of the cubic simula-
tion cell at fixed �=0.106 bohr−1 �solid line�, corresponding to the
value set in the Heyd-Scuseria-Ernzerhof functional �Ref. 56�. At
large L, �̃ approaches � / �L3�2� �dashed line�. The Brillouin zone is
sampled at the � point.
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to any divergence of the interaction potential and allowed us
to obtain reliable benchmarks.

IV. NEUTRAL SYSTEMS

A. Finite systems

In this section, we present calculations for total energies
and energy eigenvalues of small organic molecules. For these
calculations, we used the electronic-structure scheme based
on plane waves and pseudopotentials with large supercells of
varying size and �-point sampling. We considered the mol-
ecules of naphthalene �C10H8� and pyridine �C5H5N�, which
are sufficiently small to allow us to investigate the
asymptotic behavior for large simulation cells. Furthermore,
the eigenvalue of the lowest unoccupied molecular orbital
�LUMO� of these molecules is found below the vacuum
level, both in PBE and PBE0. In Fig. 3, the total energies and
the energy eigenvalue gaps of naphthalene calculated in PBE
and PBE0 are plotted as a function of the size of the cubic
simulation cell. In hybrid-functional calculations, we explic-
itly compare results obtained with and without the singular-
ity correction �, i.e., obtained by turning on and off the G
=0 component of the exact exchange potential. One notices
that both the total energies and the energy eigenvalue gaps
calculated in PBE0 show a convergence behavior similar to
that achieved in PBE provided the singularity is accounted
for. Note that for the largest considered supercell �side of 60
bohr� the singularity correction � is still quite sizable and
amounts to about 0.2 eV. A similar behavior is observed for
pyridine �not shown�. These results therefore indicate that in
the case of isolated molecular systems, the singularity cor-
rection is crucial to achieve well-converged values of total
energies and energy eigenvalues in hybrid-functional calcu-
lations based on plane-wave basis sets.

To benchmark our hybrid-functional results, we also used
an all-electron electronic-structure scheme based on local-

ized atomic orbitals and open boundary conditions.36 Total
energies cannot be compared because of the different number
of electrons that are treated explicitly. The energy eigenval-
ues and energy gaps are compared with those obtained with
the plane-wave scheme in Table I. The eigenvalues are re-
ferred to the vacuum level corresponding to the local poten-
tial far from the molecule. The agreement between the two
sets of calculations is very good. This agreement further sup-
ports the validity of the singularity correction derived in Sec.
II. To the extent that basis set errors for these molecules are
small, the differences also provide an estimate of the way the
different treatments of core electrons affect the energy eigen-
values obtained with hybrid functionals. Table I also contains
calculated ionization potentials, of which the discussion is
deferred to Sec. V A.

B. Extended systems

In this section, we study the effect of the singularity cor-
rection in hybrid-functional calculations on the total energies
and energy eigenvalues of bulk systems. In particular, our
purpose is �i� to illustrate the convergence of small-cell cal-
culations with k-point sampling �cf. Refs. 46 and 48� and �ii�
to study the convergence of �-point calculations with super-
cell size. In the latter case, one issue of interest is whether
the achieved level of convergence is similar to that of corre-
sponding calculations with semilocal functionals.

We chose silicon and �-quartz SiO2 to examine systems
with different band gaps. To allow a comparison between
PBE and PBE0 calculations of the electronic structure, we
used the lattice parameters optimized in the PBE also in the
hybrid-functional calculations.

We first considered the convergence of total energies.
PBE and PBE0 results for silicon and � quartz are displayed
in Fig. 4. The data points illustrate how convergence is
achieved with increasing density of k-point sampling. For
both systems, the inclusion of the singularity correction in
the hybrid-functional calculations leads to a faster conver-
gence, very similar to that achieved by the semilocal func-
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FIG. 3. �a� Total energies and �b� energy eigenvalue gaps of
naphthalene calculated using the PBE �left panels� and PBE0 �right
panels� functionals vs supercell size. To allow a fair comparison,
the same energy scales are used in the left and right panels. For
PBE0, closed and open symbols indicate values obtained with the
singularity correction turned on and off, respectively.

TABLE I. Energy eigenvalues of the highest occupied molecular
orbitals ��HOMO� and of the lowest unoccupied molecular orbitals
��LUMO�, energy eigenvalue band gaps �Eg�, and ionization poten-
tials �IP� of naphthalene and pyridine calculated with the PBE0
functional through a plane wave �CPMD, Ref. 41� and an all-
electron scheme �GAUSSIAN03, Ref. 36�. The eigenvalues are re-
ferred to the vacuum level.

CPMD GAUSSIAN03

Naphthalene �HOMO −6.34 −6.28

�LUMO −1.29 −1.20

Eg 5.05 5.08

IP 7.96 7.94

Pyridine �HOMO −7.51 −7.43

�LUMO −0.98 −0.83

Eg 6.53 6.60

IP 9.51 9.46
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tional. It is apparent that the singularity correction is sizable
and that its inclusion significantly speeds up the conver-
gence. For comparison, we also calculated total energies em-
ploying large supercells and �-point sampling. In the respec-
tive limits of dense k-point samplings and large supercell
size, the two kinds of calculations give the same converged
energies. When the energies calculated in the latter scheme
are reported in Fig. 4 �see arrows�, they are found to corre-
spond to energies obtained with primitive cells and dense
k-point samplings. In particular, for finite supercell size, the
degree of convergence achieved with hybrid functionals
when the singularity is treated is comparable to that obtained
with semilocal functionals. These results highlight the impor-
tance of including the singularity correction when using hy-
brid functionals with �-point sampling. This is particularly
important when total energies obtained with supercells of
different size are comparatively evaluated, such as in the
optimization of lattice parameters or in constant-pressure
molecular-dynamics simulations.

Next, we addressed the convergence of energy-band edges
and band gaps. The band gap is obtained from the energy
eigenvalues

Eg = �c − �v, �26�

where �c and �v are the conduction-band minimum and the
valence-band maximum, respectively. In Fig. 5, we give the
band gaps of silicon and SiO2 as a function of k-point sam-
pling or supercell size, as obtained within both the PBE and
the PBE0. The results obtained with the hybrid functional are
given with and without the singularity correction. In analogy
with the convergence of the total energy �Fig. 4�, the conver-
gence of the band gap is very slow when omitting this cor-
rection. The improvement is more clear for SiO2, for which

the band gap converges at a sparser k-point density. Results
obtained with large supercells and �-point sampling coincide
with those obtained with small unit cells and dense k-point
meshes. We note that in the case of SiO2 a converged value
of the PBE0 band gap is already achieved with a simulation
cell of 72 atoms, well within current computationally acces-
sible limits. In the case of Si, the convergence is slower
because of the smaller band gap, but the convergence of the
hybrid functional result is similar to that achieved with the
semilocal functional when the singularity correction is in-
cluded. In Fig. 5, the convergence of the respective band
edges is shown. The singularity correction only affects the
occupied states by introducing a constant downward shift in
the energies �cf. Sec. II�.

In many applications concerning surfaces and interfaces,
the supercells have an elongated shape to describe the tran-
sition across the boundary region. For such systems, the
omission of the singularity correction in a hybrid-functional
calculation in which a �-point sampling is used leads to a
peculiar behavior of total energies and single-particle eigen-
values. To simulate these conditions, we considered an eight-
atom cubic simulation cell for bulk silicon and increased the
k-point sampling along the �001� direction, while keeping the
k-point sampling in the orthogonal directions constant. This
description is equivalent to that achieved with an elongated
supercell calculation in which the Brillouin zone is sampled
at the sole � point. Figure 6 shows the calculated band gap
vs. the number of k-points in the �001� direction. Omitting
the singularity correction leads in this case to a linear in-
crease in the band gap. A similar linear increase is also found
for the total energy �not shown�. In neither case, it is there-
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FIG. 4. Total energies of �a� Si and �b� �-quartz SiO2 per for-
mula unit vs 1 /NkNat, where Nk is the total number of k points and
Nat the total number of atoms in the supercell. Results obtained in
the PBE and the PBE0 are reported in left and right panels, respec-
tively. For PBE0, closed and open symbols indicate values obtained
with the singularity correction turned on and off, respectively. Ar-
rows show data points that were also obtained with �-point
sampling.
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energies obtained with the two functionals are aligned through the
local electrostatic potential �cf. Ref. 29�.
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fore possible to obtain a converged value. Including the sin-
gularity correction reestablishes a converging behavior that
resembles that found in semilocal density-functional calcula-
tions.

From the result in Fig. 6, we infer that the singularity
corrections for elongated simulation cells may change sign in
comparison with cubic unit cells and/or isotropic k-point
meshes. To understand this behavior, it is useful to recall
that, in the case of �-point sampling, the singularity correc-
tion is proportional to the energy per unit cell of a periodi-
cally repeated point charge immersed in a compensating
background. In case of nearly cubic supercells the latter en-
ergy is negative, i.e., the attractive interaction of the point
charge with the uniform background is larger than the repul-
sive interactions between the point charge and its images.
When the shape of the cell elongates in one or two direc-
tions, the repulsive interaction with the image charges in the
orthogonal directions grows because of the reduced screen-
ing. For sufficiently elongated shapes, this repulsive interac-
tion dominates and the sign of the point-charge energy
switches.

To summarize the results of this section, we showed that
the singularity correction is needed to obtain converged total
energies and single-electron eigenvalues in hybrid-functional
calculations with small unit cell and dense k-point samplings,
in accord with previous studies.46,48 Furthermore, we showed
that hybrid-functional calculations with large supercells and
�-point samplings also benefit from the singularity correc-
tion, yielding levels of convergence which are similar to
those achieved with semilocal functionals. In the case of
�-point samplings, the singularity correction applies to both
molecular and extended systems in a qualitatively similar
way.

V. CHARGED SYSTEMS: LOCALIZED STATES

In the following, we discuss convergence issues associ-
ated to charged systems when using hybrid-functional
schemes based on plane-wave basis sets. Charged systems
occur in several circumstances, such as, for example, when
studying charged molecules, defects, ions in liquids, etc. We

here focus on the determination of total-energy differences
between different charge states and the way the singularity
correction affects the convergence properties. We are particu-
larly interested in assessing how the convergence properties
of hybrid-functional calculations compare with those of
semilocal density-functional calculations. For simplicity, we
consider from now on only systems in which the electronic
structure is sampled through the sole � point. The conver-
gence is therefore studied with respect to increasing simula-
tion cell, or equivalently with respect to decreasing singular-
ity correction. Generalization to convergence with k-point
samplings is trivial. In this section, we deal with atomically
localized states, either in finite systems or as defect states in
solids. Infinitely delocalized states are discussed in Sec. VI.
In this work, we do not consider states showing intermediate
degrees of localization. For a discussion of the latter, we
defer the reader to Ref. 61.

A. Finite systems

To illustrate the convergence of total-energy differences
between different charge states, we considered the calcula-
tion of the ionization potential �IP� of an isolated molecule

IP = EN−1 − EN, �27�

where EN is the total energy of the neutral molecule and EN−1
the total energy of the same molecule in which one electron
has been removed. The total-energy calculations correspond
to an isolated molecule placed in a large supercell and sub-
ject to periodic boundary conditions. This technical con-
straint introduces a spurious interaction between the local-
ized charge and the neutralizing background charge, which
needs to be considered in order to speed up the
convergence.62 This correction depends on the size of the
simulation cell, but applies indifferently to both hybrid func-
tionals and semilocal density functionals. In our calculations,
the dominant correction corresponding to the charge mono-
pole has systematically been included.62

In Fig. 7, we give the ionization potentials of naphthalene
calculated within both the PBE and the PBE0 for different
supercell sizes. The PBE0 results are obtained by both in-
cluding and dismissing the singularity correction. The results
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and PBE0 �right panel� functionals for a cubic simulation cell con-
taining eight atoms vs number of k points in the �001� direction,
Nkz, with fixed k-point sampling in the orthogonal directions �Nkx

=Nky =2�. For PBE0, closed and open symbols indicate values ob-
tained with the singularity correction turned on and off,
respectively.

β (eV)

without correction
with correction

β (eV)

-8.0

-7.9

-7.8

-7.7

-7.6

-7.5

-I
P

(e
V

)

PBE PBE0

FIG. 7. Ionization potential �IP� of naphthalene calculated with
the PBE �left panel� and PBE0 �right panel� functionals for cubic
simulation cells vs singularity correction �, which scales like the
inverse of the simulation cell size. For PBE0, closed and open sym-
bols indicate values obtained with the singularity correction turned
on and off, respectively.

BROQVIST, ALKAUSKAS, AND PASQUARELLO PHYSICAL REVIEW B 80, 085114 �2009�

085114-8



are plotted as a function of the singularity correction, which
scales like the inverse of the simulation cell size. For the
simulation cells considered �cubic cells with sides ranging
between 20 and 60 bohr�, the PBE results are already close
to the converged values obtained by linear extrapolation. The
same consideration applies for the PBE0 results which in-
clude the singularity correction. However, in absence of sin-
gularity correction, the error with respect to the converged
values is significantly larger. The converged PBE0 values for
the ionization potentials of naphthalene and pyridine are re-
ported in Table I, where they are compared with results ob-
tained with an all-electron scheme based on localized orbit-
als. The values calculated within the two schemes differ by
less than 0.05 eV.

It is of interest to extend our comparative study between
PBE and PBE0 calculations to the approximate scheme
based on Slater’s transition state.63 According to the integral
form of Janak’s theorem,64 the total-energy difference of Eq.
�27� is given by

EN−1 − EN = − �
0

1

�n�f�df , �28�

where �n�f� describes the eigenvalue of the highest occupied
eigenstate n as it varies with its fractional occupation f . Us-
ing the trapezoidal rule for the integral, we obtain Slater’s
approximation

EN−1 − EN � − �n�1/2� � − ��n�0� + �n�1��/2, �29�

where we further approximated the eigenvalue at half-filling
by an average at integer occupations. For the molecules in-
vestigated here, this approximation is found to give accurate
results for both the semilocal and the hybrid functional �not
shown�. Note that, in the latter case, the singularity correc-
tions of energies and eigenvalues are compatible with the
relation in Eq. �29�. Indeed, this approximation equally holds
for corrected energies and eigenvalues as for uncorrected
ones. Similar considerations apply to electron removal ener-
gies.

B. Defects in solids

The discussion pertaining to total-energy differences of
finite systems �Sec. V A� applies with minor modifications to
the study of localized defect states in solids. In this case, the
relevant physical quantities, the charge transition levels, are
also expressed as total-energy differences. Defect formation
energies are first determined for varying electron chemical-
potential � �Ref. 18�

Ef
q��� = Etot

q − Etot
bulk − �

�

n��� + q�� + �v + 	V� + Ecorr
q ,

�30�

where Etot
q is the total energy of the defect system carrying a

charge q, Etot
bulk the total energy of the unperturbed system, n�

the number of extra atoms of species � needed to create the
defect, and �� the corresponding atomic chemical potential.
The chemical-potential � is referred to the valence-band
maximum �v. 	V is a correction which is applied in order to

align the local potential far away from the neutral defect to
that of the unperturbed bulk.18 The correction Ecorr

q describes
the spurious interaction of the added charge with the com-
pensating background charge.62 As commented in Sec. II A,
the leading term of this correction pertaining to the mono-
pole can be expressed as

Ecorr
q =

q2�

2�
, �31�

where � is defined in Eq. �11� and � is the dielectric constant
of the unperturbed bulk system. In our calculations, this cor-
rection is applied systematically in both PBE and PBE0 cal-
culations.

Charge transition levels correspond to specific values of
the electron chemical potential for which two charge states
have equal formation energies. For example, the charge tran-
sition level �q/q� between two charge states q and q� is de-

fined by the condition Ef
q=Ef

q� and is thus given by the fol-
lowing expression:

�q/q� =
�Ef

q� − Ef
q� + �Ecorr

q� − Ecorr
q �

q − q�
− ��v + 	V� . �32�

In this expression the dependence on the atomic chemical-
potentials � drops out and the defect charge transition level
is basically determined by a total-energy difference between
different charge states of the defect. In this sense, these quan-
tities are counterparts of the ionization potentials and elec-
tron affinities of isolated atomic and molecular systems. The
charge transition levels of localized defect states can also be
obtained in a very accurate way through the energy eigenval-
ues by the application of Janak’s theorem both in PBE and in
PBE0 �Eq. �29��.65

We illustrate the convergence behavior of charge transi-
tion levels for the hydrogen bridge defect �hydrogen substi-
tutional to oxygen� in �-crystobalite SiO2. In particular, we
focused on the vertical charge transition level �+/0 located at
approximately mid gap.66,67 We considered three different
supercells in which one lateral size was varied while the
other dimensions were kept fixed, i.e., we used 2�2�2, 2
�2�3, and 2�2�4 unit cells. Such elongated cells might
for instance occur when slab models are adopted. Charge
transition levels calculated in the PBE and in the PBE0 are
shown in Fig. 8 for increasing number of atoms in the simu-
lation cell. The results obtained with the two functionals are
aligned through the local electrostatic potential, as suggested
by the study in Ref. 29. It clearly appears that the PBE and
PBE0 defect levels show a similar convergence behavior,
provided the singularity correction is included in the PBE0
calculation. The singularity correction is crucial to achieve
this level of convergence. Without the singularity correction,
the charge transition levels are clearly not converged for the
range of simulation cells considered. It is clearly seen that
the convergence behavior of charge transition levels of de-
fects is analogous to that of energy transitions in finite sys-
tems �Sec. V A�.
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VI. CHARGED SYSTEMS: DELOCALIZED STATES

The case in which the extra charge is carried by extended
delocalized states requires special attention. Let us assume
an infinite solid with an energy eigenvalue spectrum �k. The
energy cost of adding one electron to the previously unoccu-
pied state n is simply given by

EN+1 − EN = �n, �33�

where we used Janak’s theorem64 as formulated in Eq. �28�
and the fact that energy eigenvalues in infinite solids do not
depend on the occupation of the state. Identical consider-
ations also apply for electron removal energies. On this ba-
sis, it is possible to express the valence and conduction-band
edges in terms of total-energy differences between systems
of different charge

�̃c = EN+1 − EN, �34�

�̃v = EN − EN−1. �35�

Consequently, the energy-band gap can also be obtained as

Ẽg = �̃c − �̃v = EN+1 + EN−1 − 2EN. �36�

In our notation, the tilde sign signifies that the concerned
quantity is obtained from a total-energy difference, as op-
posed to a direct derivation from the spectrum of energy
eigenvalues.

In practical calculations, the supercells always have finite
size, by which the band edges determined by total-energy
difference differ from the actual energy eigenvalues34

�̃c = �c + 	�c, �37�

�̃v = �v + 	�v, �38�

where it is understood that

lim
�→�

	�c = 0, �39�

lim
�→�

	�v = 0, �40�

where � is the volume of the simulation cell. Similarly, we
define

Ẽg = Eg + 	Eg, �41�

where 	Eg=	�c−	�v.
We first focus on results obtained with the semilocal den-

sity functional. For illustration, we considered �-quartz SiO2
and used simulation cells of varying size. In Fig. 9, we report
the band edges calculated using the total-energy differences
given in Eqs. �34� and �35�, and compare them with the
converged energy eigenvalues. For the simulation cells con-
sidered here, the band edges obtained in the two different
ways are essentially identical, i.e., 	�c�0 and 	�v�0.

Figure 9 also shows corresponding results obtained with
hybrid functionals. In contrast to the behavior found for
semilocal functionals, we now encounter a much slower con-
vergence. In other words, in hybrid-functional calculations,
	�c and 	�v are significantly larger than in semilocal
density-functional calculations performed with the same
simulation cells. Therefore, we infer that this behavior
should be ascribed to the singular behavior of the exchange
interaction.

In order to understand this behavior, we reason as follows:
the relations given by Eqs. �37� and �38� follow from the
Janak theorem and apply to any analytical functional. There-
fore, they also apply to a case functional which is specific to
a given simulation cell and a given basis set. We further
define the case functional by setting the G=0 component of
the exchange potential to zero, which corresponds to the la-
bel “uncorr” introduced earlier. For this case functional, 	�c
and 	�v are expected to behave in a similar way as for a
semilocal functional. Hence, for simulation cells large
enough to yield vanishing 	�c and 	�v with the semilocal
functional, we similarly expect vanishing 	�c

uncorr and
	�v

uncorr. This implies

�c
uncorr � EN+1

uncorr − EN
uncorr, �42�
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FIG. 8. Vertical charge transition levels �+/0 associated to the
hydrogen bridge defect in � crystobalite as obtained with the PBE
�left panel� and the PBE0 �right panel� functionals vs number of
atoms Nat in the simulation cell. For PBE0, closed and open sym-
bols indicate values obtained with the singularity correction turned
on and off, respectively. The indicated valence and conduction-band
edges correspond to the converged energy eigenvalues. The ener-
gies obtained with the two functionals are aligned through the local
electrostatic potential �cf. Ref. 29�.

0.0 0.2 0.4 0.6 0.8 1.0
β (eV)

without correction
with correction

0.0 0.2 0.4 0.6 0.8 1.0
β (eV)

0.0

2.0

4.0

6.0

8.0

en
er

gy
(e

V
)

CBM

VBM

PBE PBE0

FIG. 9. Band edges of � quartz calculated with the PBE �left�
and PBE0 �right� functionals as total-energy differences vs singu-
larity correction � that characterizes the simulation cell, the limit of
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�v
uncorr � EN

uncorr − EN−1
uncorr. �43�

As shown in the first two panels in Fig. 10, this behavior is
numerically confirmed for our case study of � quartz.

Using the relationship between corrected and uncorrected
quantities determined in Eqs. �14� and �17�, we then derive

�c
corr � EN+1

corr − EN
corr + �/2, �44�

�v
corr � EN

corr − EN−1
corr − �/2. �45�

In other words, hybrid-functional calculations in finite simu-
lation cells give

	�c � − �/2, �46�

	�v � + �/2. �47�

This result is graphically illustrated for � quartz in the third-
column panels of Fig. 10. For the band gap, this implies

	Eg � − � . �48�

We note that the remaining dependence of both �̃c and �̃v on
� does not result from the integration of the singularity, since
the results in the third panel in Fig. 10 already refer to “cor-
rected” results. The remaining differences rather originate
from the exchange self-interaction associated to the extra
charge, which vanishes slowly with increasing simulation
cell. Hence, this behavior is not specific to the use of plane-
wave basis sets and should also manifest in implementations
based on other basis functions.

Our findings concerning the energy eigenvalues are sche-
matically illustrated in Fig. 11. The scheme refers to a case in
which all quantities would already be converged with simu-
lation cell size, if it were not for the occurrence of exact
exchange. Figure 11�a� refers to the corrected energy eigen-
values and corresponds to the converged result. Figure 11�b�

shows the eigenvalues in the “uncorrected” case. The singu-
larity correction shifts the occupied states downwards by �,
leaving the unoccupied ones unaffected. Figure 11�c� refers
to the determination of band edges through the use of total-
energy differences. It is seen that the band edges obtained in
this way still differ from the converged levels, despite the use
of corrected quantities. The valence-band edge is overesti-
mated by � /2, whereas the conduction-band edge is under-
estimated by � /2. Consequently, the band gap is underesti-
mated by � through this approach. Figure 11�d� also refers to
band edges obtained through total-energy differences but
without including the singularity correction. One obtains the
same result as in Fig. 11�b�, illustrating thereby that the sin-
gular behavior of the exchange term is responsible for the
slow convergence of the band edges calculated by total-
energy differences.

VII. CONCLUSIONS

In this work, we investigated the use of hybrid functionals
in plane-wave implementations, in comparison with semilo-
cal density functionals. The main objective consisted in de-
termining whether a hybrid-functional calculation requires a
k-point sampling of increased density in order to properly
integrate the singularity appearing in the exact nonlocal ex-
change energy. This issue is of particular importance when
dealing with large simulation cells, where an excessive in-
crease in the k-point sampling would make the calculation
computationally prohibitive. Typical applications include
surface, interface, and defect calculations, but also
molecular-dynamics simulations.

To treat the divergence, we adopted a formulation which
consists in transforming the integrand into a regular function
through the use of an auxiliary function that can be inte-
grated analytically.44 Through the use of an appropriate aux-
iliary function,45 this formulation can trivially be extended to
calculations with large simulation cells and low-density
k-point samplings. In the case of �-point sampling, the sam-
pling of reciprocal space is achieved through the reciprocal-
lattice vectors, which densify as the simulation cell grows.
We further used a formulation which recasts the treatment of
the divergence in the form of singularity correction terms.46

These terms intervene in the total energy and in the energy
eigenvalues of the occupied states.
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singularity correction �. In the right panel, the dashed lines corre-
spond to 	�c=−� /2 and 	�v=+� /2.

VBM

CBM

(b) eigenvalues
without correction

(a) eigenvalues
with correction

(d) total-energy diffs.
without correction

���

�
���
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corr

�v
corr
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�v
uncorr

~�c
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~�v
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~�c
corr

FIG. 11. Schematic representation of the band edges determined
with hybrid functionals in the presence of a limited k-point sam-
pling: as energy eigenvalues �a� with and �b� without accounting for
the singularity correction and through total-energy differences �c�
with and �d� without singularity correction. The result in �a� shows
the fastest convergence with simulation cell.
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In the present investigation, we found it convenient to
distinguish finite and extended systems, localized and delo-
calized states, and neutral and charged calculations. The gen-
eral conclusion is that the same k-point samplings used in
semilocal density-functional calculations yield a comparable
level of convergence in hybrid-functional calculations, pro-
vided the singularity corrections are accounted for. However,
our study highlights a few points that deserve special atten-
tion.

The first point concerns the treatment of screened ex-
change. While screened exchange does not show any singu-
larity, it is nevertheless recommended to adopt the proposed
scheme also in this case in order to achieve the same con-
vergence properties as achieved with semilocal density func-
tionals.

The second noteworthy point concerns applications in
which the sampling in reciprocal space around the diver-
gence is anisotropic. This is for instance the case for calcu-
lations with elongated simulation cells and �-point sam-
plings, as often occurs in the study of surfaces and interfaces.
In such cases, the singularity correction terms are critical for
achieving not only well converged properties but also a
qualitatively correct behavior.

The final point that deserves attention and which is un-
usual with respect to ordinary semilocal density-functional

calculations concerns the determination of band edges and
band gaps of extended systems through total-energy differ-
ences. Our study shows that band edges determined in this
way converge slower in hybrid-functional calculations be-
cause of the exchange self-interaction associated to the extra
charge. This convergence problem arises for delocalized
states but does not occur for localized states of point defects
or of finite molecular systems.

In conclusion, the correct treatment of the singularity can
be achieved without requiring any significant computational
overhead. This opens the way for using hybrid functionals in
very much the same way as ordinary semilocal functionals.
To date, the scheme described in this work has already led to
several successful applications including studies of amor-
phous systems,68 defects,25,28–30,33,69 and interfaces.28,42,70–73
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